There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ aln(x) - \frac{{e}^{(x - 1)}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = aln(x) - \frac{{e}^{(x - 1)}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( aln(x) - \frac{{e}^{(x - 1)}}{x}\right)}{dx}\\=&\frac{a}{(x)} - \frac{-{e}^{(x - 1)}}{x^{2}} - \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{x}\\=&\frac{a}{x} + \frac{{e}^{(x - 1)}}{x^{2}} - \frac{{e}^{(x - 1)}}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!