There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{-2}(1 - 1.13{x}^{-1})(1 - 1.6{x}^{-1} + (0.64 + 0.0121){x}^{-2})(a + b{x}^{-1})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{x^{2}} + \frac{b}{x^{3}} - \frac{1.6a}{x^{3}} - \frac{1.6b}{x^{4}} + \frac{0.64a}{x^{4}} + \frac{0.64b}{x^{5}} + \frac{0.0121a}{x^{4}} + \frac{0.0121b}{x^{5}} - \frac{1.13a}{x^{3}} - \frac{1.13b}{x^{4}} + \frac{1.808a}{x^{4}} + \frac{1.808b}{x^{5}} - \frac{0.7232a}{x^{5}} - \frac{0.7232b}{x^{6}} - \frac{0.013673a}{x^{5}} - \frac{0.013673b}{x^{6}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{x^{2}} + \frac{b}{x^{3}} - \frac{1.6a}{x^{3}} - \frac{1.6b}{x^{4}} + \frac{0.64a}{x^{4}} + \frac{0.64b}{x^{5}} + \frac{0.0121a}{x^{4}} + \frac{0.0121b}{x^{5}} - \frac{1.13a}{x^{3}} - \frac{1.13b}{x^{4}} + \frac{1.808a}{x^{4}} + \frac{1.808b}{x^{5}} - \frac{0.7232a}{x^{5}} - \frac{0.7232b}{x^{6}} - \frac{0.013673a}{x^{5}} - \frac{0.013673b}{x^{6}}\right)}{dx}\\=&\frac{a*-2}{x^{3}} + \frac{b*-3}{x^{4}} - \frac{1.6a*-3}{x^{4}} - \frac{1.6b*-4}{x^{5}} + \frac{0.64a*-4}{x^{5}} + \frac{0.64b*-5}{x^{6}} + \frac{0.0121a*-4}{x^{5}} + \frac{0.0121b*-5}{x^{6}} - \frac{1.13a*-3}{x^{4}} - \frac{1.13b*-4}{x^{5}} + \frac{1.808a*-4}{x^{5}} + \frac{1.808b*-5}{x^{6}} - \frac{0.7232a*-5}{x^{6}} - \frac{0.7232b*-6}{x^{7}} - \frac{0.013673a*-5}{x^{6}} - \frac{0.013673b*-6}{x^{7}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!