本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{-2}(1 - 1.13{x}^{-1})(1 - 1.6{x}^{-1} + (0.64 + 0.0121){x}^{-2})(a + b{x}^{-1}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{a}{x^{2}} + \frac{b}{x^{3}} - \frac{1.6a}{x^{3}} - \frac{1.6b}{x^{4}} + \frac{0.64a}{x^{4}} + \frac{0.64b}{x^{5}} + \frac{0.0121a}{x^{4}} + \frac{0.0121b}{x^{5}} - \frac{1.13a}{x^{3}} - \frac{1.13b}{x^{4}} + \frac{1.808a}{x^{4}} + \frac{1.808b}{x^{5}} - \frac{0.7232a}{x^{5}} - \frac{0.7232b}{x^{6}} - \frac{0.013673a}{x^{5}} - \frac{0.013673b}{x^{6}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{a}{x^{2}} + \frac{b}{x^{3}} - \frac{1.6a}{x^{3}} - \frac{1.6b}{x^{4}} + \frac{0.64a}{x^{4}} + \frac{0.64b}{x^{5}} + \frac{0.0121a}{x^{4}} + \frac{0.0121b}{x^{5}} - \frac{1.13a}{x^{3}} - \frac{1.13b}{x^{4}} + \frac{1.808a}{x^{4}} + \frac{1.808b}{x^{5}} - \frac{0.7232a}{x^{5}} - \frac{0.7232b}{x^{6}} - \frac{0.013673a}{x^{5}} - \frac{0.013673b}{x^{6}}\right)}{dx}\\=&\frac{a*-2}{x^{3}} + \frac{b*-3}{x^{4}} - \frac{1.6a*-3}{x^{4}} - \frac{1.6b*-4}{x^{5}} + \frac{0.64a*-4}{x^{5}} + \frac{0.64b*-5}{x^{6}} + \frac{0.0121a*-4}{x^{5}} + \frac{0.0121b*-5}{x^{6}} - \frac{1.13a*-3}{x^{4}} - \frac{1.13b*-4}{x^{5}} + \frac{1.808a*-4}{x^{5}} + \frac{1.808b*-5}{x^{6}} - \frac{0.7232a*-5}{x^{6}} - \frac{0.7232b*-6}{x^{7}} - \frac{0.013673a*-5}{x^{6}} - \frac{0.013673b*-6}{x^{7}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!