There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(rsin(x) - a)}^{2} + {(rcos(x) - b)}^{2})}^{\frac{1}{2}} + {({(rsin(x) - c)}^{2} + {(rcos(x) - d)}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (r^{2}sin^{2}(x) - 2rasin(x) + a^{2} + r^{2}cos^{2}(x) - 2rbcos(x) + b^{2})^{\frac{1}{2}} + (r^{2}sin^{2}(x) - 2rcsin(x) + c^{2} + r^{2}cos^{2}(x) - 2rdcos(x) + d^{2})^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (r^{2}sin^{2}(x) - 2rasin(x) + a^{2} + r^{2}cos^{2}(x) - 2rbcos(x) + b^{2})^{\frac{1}{2}} + (r^{2}sin^{2}(x) - 2rcsin(x) + c^{2} + r^{2}cos^{2}(x) - 2rdcos(x) + d^{2})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(r^{2}*2sin(x)cos(x) - 2racos(x) + 0 + r^{2}*-2cos(x)sin(x) - 2rb*-sin(x) + 0)}{(r^{2}sin^{2}(x) - 2rasin(x) + a^{2} + r^{2}cos^{2}(x) - 2rbcos(x) + b^{2})^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(r^{2}*2sin(x)cos(x) - 2rccos(x) + 0 + r^{2}*-2cos(x)sin(x) - 2rd*-sin(x) + 0)}{(r^{2}sin^{2}(x) - 2rcsin(x) + c^{2} + r^{2}cos^{2}(x) - 2rdcos(x) + d^{2})^{\frac{1}{2}}})\\=& - \frac{racos(x)}{(r^{2}sin^{2}(x) - 2rasin(x) + a^{2} + r^{2}cos^{2}(x) - 2rbcos(x) + b^{2})^{\frac{1}{2}}} + \frac{rbsin(x)}{(r^{2}sin^{2}(x) - 2rasin(x) + a^{2} + r^{2}cos^{2}(x) - 2rbcos(x) + b^{2})^{\frac{1}{2}}} - \frac{rccos(x)}{(r^{2}sin^{2}(x) - 2rcsin(x) + c^{2} + r^{2}cos^{2}(x) - 2rdcos(x) + d^{2})^{\frac{1}{2}}} + \frac{rdsin(x)}{(r^{2}sin^{2}(x) - 2rcsin(x) + c^{2} + r^{2}cos^{2}(x) - 2rdcos(x) + d^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!