There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + \frac{(1 - {x}^{2})}{(2sqrt(x + 1))} - \frac{{({x}^{2} - 1)}^{2}}{(8{(x + 1)}^{\frac{3}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{1}{2}x^{2}}{sqrt(x + 1)} + \frac{\frac{1}{2}}{sqrt(x + 1)} + x - \frac{\frac{1}{8}x^{4}}{(x + 1)^{\frac{3}{2}}} + \frac{\frac{1}{4}x^{2}}{(x + 1)^{\frac{3}{2}}} - \frac{\frac{1}{8}}{(x + 1)^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{1}{2}x^{2}}{sqrt(x + 1)} + \frac{\frac{1}{2}}{sqrt(x + 1)} + x - \frac{\frac{1}{8}x^{4}}{(x + 1)^{\frac{3}{2}}} + \frac{\frac{1}{4}x^{2}}{(x + 1)^{\frac{3}{2}}} - \frac{\frac{1}{8}}{(x + 1)^{\frac{3}{2}}}\right)}{dx}\\=& - \frac{\frac{1}{2}*2x}{sqrt(x + 1)} - \frac{\frac{1}{2}x^{2}*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + 1 - \frac{1}{8}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})x^{4} - \frac{\frac{1}{8}*4x^{3}}{(x + 1)^{\frac{3}{2}}} + \frac{1}{4}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})x^{2} + \frac{\frac{1}{4}*2x}{(x + 1)^{\frac{3}{2}}} - \frac{1}{8}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})\\=& - \frac{x}{sqrt(x + 1)} + \frac{x^{2}}{4(x + 1)^{\frac{3}{2}}} + \frac{3x^{4}}{16(x + 1)^{\frac{5}{2}}} - \frac{x^{3}}{2(x + 1)^{\frac{3}{2}}} - \frac{3x^{2}}{8(x + 1)^{\frac{5}{2}}} + \frac{x}{2(x + 1)^{\frac{3}{2}}} - \frac{1}{4(x + 1)^{\frac{3}{2}}} + \frac{3}{16(x + 1)^{\frac{5}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!