本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x + \frac{(1 - {x}^{2})}{(2sqrt(x + 1))} - \frac{{({x}^{2} - 1)}^{2}}{(8{(x + 1)}^{\frac{3}{2}})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{\frac{1}{2}x^{2}}{sqrt(x + 1)} + \frac{\frac{1}{2}}{sqrt(x + 1)} + x - \frac{\frac{1}{8}x^{4}}{(x + 1)^{\frac{3}{2}}} + \frac{\frac{1}{4}x^{2}}{(x + 1)^{\frac{3}{2}}} - \frac{\frac{1}{8}}{(x + 1)^{\frac{3}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{\frac{1}{2}x^{2}}{sqrt(x + 1)} + \frac{\frac{1}{2}}{sqrt(x + 1)} + x - \frac{\frac{1}{8}x^{4}}{(x + 1)^{\frac{3}{2}}} + \frac{\frac{1}{4}x^{2}}{(x + 1)^{\frac{3}{2}}} - \frac{\frac{1}{8}}{(x + 1)^{\frac{3}{2}}}\right)}{dx}\\=& - \frac{\frac{1}{2}*2x}{sqrt(x + 1)} - \frac{\frac{1}{2}x^{2}*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + 1 - \frac{1}{8}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})x^{4} - \frac{\frac{1}{8}*4x^{3}}{(x + 1)^{\frac{3}{2}}} + \frac{1}{4}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})x^{2} + \frac{\frac{1}{4}*2x}{(x + 1)^{\frac{3}{2}}} - \frac{1}{8}(\frac{\frac{-3}{2}(1 + 0)}{(x + 1)^{\frac{5}{2}}})\\=& - \frac{x}{sqrt(x + 1)} + \frac{x^{2}}{4(x + 1)^{\frac{3}{2}}} + \frac{3x^{4}}{16(x + 1)^{\frac{5}{2}}} - \frac{x^{3}}{2(x + 1)^{\frac{3}{2}}} - \frac{3x^{2}}{8(x + 1)^{\frac{5}{2}}} + \frac{x}{2(x + 1)^{\frac{3}{2}}} - \frac{1}{4(x + 1)^{\frac{3}{2}}} + \frac{3}{16(x + 1)^{\frac{5}{2}}} + 1\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!