There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (p - h + e^{1 - \frac{(p - q)}{(a - 1)} + (q - g + e^{\frac{(p - q)}{(a - 1)} - q})})\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = p - h + e^{\frac{-p}{(a - 1)} + \frac{q}{(a - 1)} + q - g + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q} + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( p - h + e^{\frac{-p}{(a - 1)} + \frac{q}{(a - 1)} + q - g + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q} + 1}\right)}{dp}\\=&1 + 0 + e^{\frac{-p}{(a - 1)} + \frac{q}{(a - 1)} + q - g + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q} + 1}(-(\frac{-(0 + 0)}{(a - 1)^{2}})p - \frac{1}{(a - 1)} + (\frac{-(0 + 0)}{(a - 1)^{2}})q + 0 + 0 + 0 + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q}((\frac{-(0 + 0)}{(a - 1)^{2}})p + \frac{1}{(a - 1)} - (\frac{-(0 + 0)}{(a - 1)^{2}})q + 0 + 0) + 0)\\=&\frac{e^{\frac{-p}{(a - 1)} + \frac{q}{(a - 1)} + q - g + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q} + 1}e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q}}{(a - 1)} - \frac{e^{\frac{-p}{(a - 1)} + \frac{q}{(a - 1)} + q - g + e^{\frac{p}{(a - 1)} - \frac{q}{(a - 1)} - q} + 1}}{(a - 1)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!