There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{icoe^{\frac{2.303(x - phio)e^{t}a}{b}}}{((1 + \frac{icoe^{\frac{2.303(x - phio)e^{t}a}{b}}l}{i})F)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\right)}{dx}\\=&(\frac{-(0 + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}(\frac{2.303ae^{t}}{b} + \frac{2.303axe^{t}*0}{b} - \frac{2.303iophae^{t}*0}{b}))}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})^{2}})icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}} + \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}(\frac{2.303ae^{t}}{b} + \frac{2.303axe^{t}*0}{b} - \frac{2.303iophae^{t}*0}{b})}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\\=&\frac{-2.303ic^{2}o^{2}alFe^{t}e^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}e^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})b} + \frac{2.303icoae^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}e^{t}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})b}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!