本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{icoe^{\frac{2.303(x - phio)e^{t}a}{b}}}{((1 + \frac{icoe^{\frac{2.303(x - phio)e^{t}a}{b}}l}{i})F)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\right)}{dx}\\=&(\frac{-(0 + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}(\frac{2.303ae^{t}}{b} + \frac{2.303axe^{t}*0}{b} - \frac{2.303iophae^{t}*0}{b}))}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})^{2}})icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}} + \frac{icoe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}(\frac{2.303ae^{t}}{b} + \frac{2.303axe^{t}*0}{b} - \frac{2.303iophae^{t}*0}{b})}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})}\\=&\frac{-2.303ic^{2}o^{2}alFe^{t}e^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}e^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})b} + \frac{2.303icoae^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}}e^{t}}{(F + colFe^{\frac{2.303axe^{t}}{b} - \frac{2.303iophae^{t}}{b}})b}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!