There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(0.007 - 0.003x)}^{2}}{((-2.25 * {10}^{-4}){x}^{2} - (6.25 * {10}^{-4})x + 1.25 * {10}^{-3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.000009x^{2}}{(-22.5x - 62.5x + 12.5)} - \frac{0.000021x}{(-22.5x - 62.5x + 12.5)} - \frac{0.000021x}{(-22.5x - 62.5x + 12.5)} + \frac{0.000049}{(-22.5x - 62.5x + 12.5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.000009x^{2}}{(-22.5x - 62.5x + 12.5)} - \frac{0.000021x}{(-22.5x - 62.5x + 12.5)} - \frac{0.000021x}{(-22.5x - 62.5x + 12.5)} + \frac{0.000049}{(-22.5x - 62.5x + 12.5)}\right)}{dx}\\=&0.000009(\frac{-(-22.5 - 62.5 + 0)}{(-22.5x - 62.5x + 12.5)^{2}})x^{2} + \frac{0.000009*2x}{(-22.5x - 62.5x + 12.5)} - 0.000021(\frac{-(-22.5 - 62.5 + 0)}{(-22.5x - 62.5x + 12.5)^{2}})x - \frac{0.000021}{(-22.5x - 62.5x + 12.5)} - 0.000021(\frac{-(-22.5 - 62.5 + 0)}{(-22.5x - 62.5x + 12.5)^{2}})x - \frac{0.000021}{(-22.5x - 62.5x + 12.5)} + 0.000049(\frac{-(-22.5 - 62.5 + 0)}{(-22.5x - 62.5x + 12.5)^{2}})\\=&\frac{0.000765x^{2}}{(-22.5x - 62.5x + 12.5)(-22.5x - 62.5x + 12.5)} + \frac{0.000018x}{(-22.5x - 62.5x + 12.5)} - \frac{0.001785x}{(-22.5x - 62.5x + 12.5)(-22.5x - 62.5x + 12.5)} - \frac{0.001785x}{(-22.5x - 62.5x + 12.5)(-22.5x - 62.5x + 12.5)} + \frac{0.004165}{(-22.5x - 62.5x + 12.5)(-22.5x - 62.5x + 12.5)} - \frac{0.000021}{(-22.5x - 62.5x + 12.5)} - \frac{0.000021}{(-22.5x - 62.5x + 12.5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!