There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{\frac{1}{x}} + {x}^{{\frac{1}{x}}^{2}} + {x}^{{\frac{1}{x}}^{3}} + {x}^{{\frac{1}{x}}^{4}})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{\frac{1}{x}}}{x} + \frac{{x}^{\frac{1}{x^{2}}}}{x} + \frac{{x}^{\frac{1}{x^{3}}}}{x} + \frac{{x}^{\frac{1}{x^{4}}}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{\frac{1}{x}}}{x} + \frac{{x}^{\frac{1}{x^{2}}}}{x} + \frac{{x}^{\frac{1}{x^{3}}}}{x} + \frac{{x}^{\frac{1}{x^{4}}}}{x}\right)}{dx}\\=&\frac{-{x}^{\frac{1}{x}}}{x^{2}} + \frac{({x}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(x) + \frac{(\frac{1}{x})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{2}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{2}}}((\frac{-2}{x^{3}})ln(x) + \frac{(\frac{1}{x^{2}})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{3}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{3}}}((\frac{-3}{x^{4}})ln(x) + \frac{(\frac{1}{x^{3}})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{4}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{4}}}((\frac{-4}{x^{5}})ln(x) + \frac{(\frac{1}{x^{4}})(1)}{(x)}))}{x}\\=&\frac{-{x}^{\frac{1}{x}}ln(x)}{x^{3}} - \frac{2{x}^{\frac{1}{x^{2}}}ln(x)}{x^{4}} - \frac{3{x}^{\frac{1}{x^{3}}}ln(x)}{x^{5}} - \frac{4{x}^{\frac{1}{x^{4}}}ln(x)}{x^{6}} - \frac{{x}^{\frac{1}{x}}}{x^{2}} - \frac{{x}^{\frac{1}{x^{2}}}}{x^{2}} - \frac{{x}^{\frac{1}{x^{3}}}}{x^{2}} + \frac{{x}^{\frac{1}{x}}}{x^{3}} + \frac{{x}^{\frac{1}{x^{3}}}}{x^{5}} - \frac{{x}^{\frac{1}{x^{4}}}}{x^{2}} + \frac{{x}^{\frac{1}{x^{2}}}}{x^{4}} + \frac{{x}^{\frac{1}{x^{4}}}}{x^{6}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!