本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{\frac{1}{x}} + {x}^{{\frac{1}{x}}^{2}} + {x}^{{\frac{1}{x}}^{3}} + {x}^{{\frac{1}{x}}^{4}})}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{x}^{\frac{1}{x}}}{x} + \frac{{x}^{\frac{1}{x^{2}}}}{x} + \frac{{x}^{\frac{1}{x^{3}}}}{x} + \frac{{x}^{\frac{1}{x^{4}}}}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{x}^{\frac{1}{x}}}{x} + \frac{{x}^{\frac{1}{x^{2}}}}{x} + \frac{{x}^{\frac{1}{x^{3}}}}{x} + \frac{{x}^{\frac{1}{x^{4}}}}{x}\right)}{dx}\\=&\frac{-{x}^{\frac{1}{x}}}{x^{2}} + \frac{({x}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(x) + \frac{(\frac{1}{x})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{2}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{2}}}((\frac{-2}{x^{3}})ln(x) + \frac{(\frac{1}{x^{2}})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{3}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{3}}}((\frac{-3}{x^{4}})ln(x) + \frac{(\frac{1}{x^{3}})(1)}{(x)}))}{x} + \frac{-{x}^{\frac{1}{x^{4}}}}{x^{2}} + \frac{({x}^{\frac{1}{x^{4}}}((\frac{-4}{x^{5}})ln(x) + \frac{(\frac{1}{x^{4}})(1)}{(x)}))}{x}\\=&\frac{-{x}^{\frac{1}{x}}ln(x)}{x^{3}} - \frac{2{x}^{\frac{1}{x^{2}}}ln(x)}{x^{4}} - \frac{3{x}^{\frac{1}{x^{3}}}ln(x)}{x^{5}} - \frac{4{x}^{\frac{1}{x^{4}}}ln(x)}{x^{6}} - \frac{{x}^{\frac{1}{x}}}{x^{2}} - \frac{{x}^{\frac{1}{x^{2}}}}{x^{2}} - \frac{{x}^{\frac{1}{x^{3}}}}{x^{2}} + \frac{{x}^{\frac{1}{x}}}{x^{3}} + \frac{{x}^{\frac{1}{x^{3}}}}{x^{5}} - \frac{{x}^{\frac{1}{x^{4}}}}{x^{2}} + \frac{{x}^{\frac{1}{x^{2}}}}{x^{4}} + \frac{{x}^{\frac{1}{x^{4}}}}{x^{6}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!