There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({k}^{2} - 2rkm - 2(1 - r)k + r{m}^{2})}{({k}^{2} - 2rkm - (1 - r)k + r{m}^{2})} + (\frac{({k}^{2} - 2rkm - 2(1 - r)k + r{m}^{2})}{(m(m - 1)(1 - r))})\ with\ respect\ to\ m:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2krm}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2k}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{k^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{rm^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(m - 1)(-r + 1)m} + \frac{k^{2}}{(m - 1)(-r + 1)m} - \frac{2kr}{(m - 1)(-r + 1)} - \frac{2k}{(m - 1)(-r + 1)m} + \frac{rm}{(m - 1)(-r + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2krm}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2k}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{k^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{rm^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(m - 1)(-r + 1)m} + \frac{k^{2}}{(m - 1)(-r + 1)m} - \frac{2kr}{(m - 1)(-r + 1)} - \frac{2k}{(m - 1)(-r + 1)m} + \frac{rm}{(m - 1)(-r + 1)}\right)}{dm}\\=& - 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})krm - \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} + 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})kr + 0 - 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})k + 0 + (\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})k^{2} + 0 + (\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})rm^{2} + \frac{r*2m}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2(\frac{-(1 + 0)}{(m - 1)^{2}})kr}{(-r + 1)m} + \frac{2(\frac{-(0 + 0)}{(-r + 1)^{2}})kr}{(m - 1)m} + \frac{2kr*-1}{(m - 1)(-r + 1)m^{2}} + \frac{(\frac{-(1 + 0)}{(m - 1)^{2}})k^{2}}{(-r + 1)m} + \frac{(\frac{-(0 + 0)}{(-r + 1)^{2}})k^{2}}{(m - 1)m} + \frac{k^{2}*-1}{(m - 1)(-r + 1)m^{2}} - \frac{2(\frac{-(1 + 0)}{(m - 1)^{2}})kr}{(-r + 1)} - \frac{2(\frac{-(0 + 0)}{(-r + 1)^{2}})kr}{(m - 1)} + 0 - \frac{2(\frac{-(1 + 0)}{(m - 1)^{2}})k}{(-r + 1)m} - \frac{2(\frac{-(0 + 0)}{(-r + 1)^{2}})k}{(m - 1)m} - \frac{2k*-1}{(m - 1)(-r + 1)m^{2}} + \frac{(\frac{-(1 + 0)}{(m - 1)^{2}})rm}{(-r + 1)} + \frac{(\frac{-(0 + 0)}{(-r + 1)^{2}})rm}{(m - 1)} + \frac{r}{(m - 1)(-r + 1)}\\=&\frac{-4k^{2}r^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{6kr^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4kr^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2kr}{(-r + 1)(m - 1)m^{2}} - \frac{2k^{2}rm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4krm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{k^{2}}{(-r + 1)(m - 1)m^{2}} - \frac{2r^{2}m^{3}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2rm}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2kr}{(m - 1)^{2}(-r + 1)m} + \frac{2k}{(-r + 1)(m - 1)m^{2}} - \frac{k^{2}}{(m - 1)^{2}(-r + 1)m} + \frac{2k^{3}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4k^{2}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2kr}{(m - 1)^{2}(-r + 1)} + \frac{2k}{(m - 1)^{2}(-r + 1)m} - \frac{4k^{2}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{rm}{(m - 1)^{2}(-r + 1)} + \frac{r}{(m - 1)(-r + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!