There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 + {x}^{2} + 4 + {x}^{2} + 4 - 4x - 5)}{(sqrt(1 + {x}^{2})sqrt({x}^{2} - 4x + 8))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)}\right)}{dx}\\=&\frac{4*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} + \frac{4*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}} + \frac{2*2x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}} - \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} - \frac{4x*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}}\\=&\frac{-4x}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)} - \frac{12x}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{8}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{2x^{3}}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)} - \frac{2x^{3}}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{8x^{2}}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} - \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{4x^{2}}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!