本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 + {x}^{2} + 4 + {x}^{2} + 4 - 4x - 5)}{(sqrt(1 + {x}^{2})sqrt({x}^{2} - 4x + 8))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)}\right)}{dx}\\=&\frac{4*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} + \frac{4*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}} + \frac{2*2x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} + \frac{2x^{2}*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}} - \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{4x*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} - 4x + 8)} - \frac{4x*-(2x - 4 + 0)*\frac{1}{2}}{sqrt(x^{2} + 1)(x^{2} - 4x + 8)(x^{2} - 4x + 8)^{\frac{1}{2}}}\\=&\frac{-4x}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)} - \frac{12x}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{8}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{4x}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} - \frac{2x^{3}}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)} - \frac{2x^{3}}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} + \frac{8x^{2}}{(x^{2} - 4x + 8)^{\frac{3}{2}}sqrt(x^{2} + 1)} - \frac{4}{sqrt(x^{2} + 1)sqrt(x^{2} - 4x + 8)} + \frac{4x^{2}}{(x^{2} + 1)^{\frac{3}{2}}sqrt(x^{2} - 4x + 8)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!