本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(3{e}^{(4x)} - 5x)}^{4} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 81{e}^{(4(4x))} - 540x{e}^{(3(4x))} + 1350x^{2}{e}^{(2(4x))} - 1500x^{3}{e}^{(4x)} + 625x^{4}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 81{e}^{(4(4x))} - 540x{e}^{(3(4x))} + 1350x^{2}{e}^{(2(4x))} - 1500x^{3}{e}^{(4x)} + 625x^{4}\right)}{dx}\\=&81({e}^{(4(4x))}((4(4))ln(e) + \frac{(4(4x))(0)}{(e)})) - 540{e}^{(3(4x))} - 540x({e}^{(3(4x))}((3(4))ln(e) + \frac{(3(4x))(0)}{(e)})) + 1350*2x{e}^{(2(4x))} + 1350x^{2}({e}^{(2(4x))}((2(4))ln(e) + \frac{(2(4x))(0)}{(e)})) - 1500*3x^{2}{e}^{(4x)} - 1500x^{3}({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)})) + 625*4x^{3}\\=&1296{e}^{(16x)} - 540{e}^{(12x)} - 6480x{e}^{(12x)} + 2700x{e}^{(8x)} + 10800x^{2}{e}^{(8x)} - 4500x^{2}{e}^{(4x)} - 6000x^{3}{e}^{(4x)} + 2500x^{3}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 1296{e}^{(16x)} - 540{e}^{(12x)} - 6480x{e}^{(12x)} + 2700x{e}^{(8x)} + 10800x^{2}{e}^{(8x)} - 4500x^{2}{e}^{(4x)} - 6000x^{3}{e}^{(4x)} + 2500x^{3}\right)}{dx}\\=&1296({e}^{(16x)}((16)ln(e) + \frac{(16x)(0)}{(e)})) - 540({e}^{(12x)}((12)ln(e) + \frac{(12x)(0)}{(e)})) - 6480{e}^{(12x)} - 6480x({e}^{(12x)}((12)ln(e) + \frac{(12x)(0)}{(e)})) + 2700{e}^{(8x)} + 2700x({e}^{(8x)}((8)ln(e) + \frac{(8x)(0)}{(e)})) + 10800*2x{e}^{(8x)} + 10800x^{2}({e}^{(8x)}((8)ln(e) + \frac{(8x)(0)}{(e)})) - 4500*2x{e}^{(4x)} - 4500x^{2}({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)})) - 6000*3x^{2}{e}^{(4x)} - 6000x^{3}({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)})) + 2500*3x^{2}\\=&20736{e}^{(16x)} - 12960{e}^{(12x)} - 77760x{e}^{(12x)} + 2700{e}^{(8x)} + 43200x{e}^{(8x)} + 86400x^{2}{e}^{(8x)} - 9000x{e}^{(4x)} - 36000x^{2}{e}^{(4x)} - 24000x^{3}{e}^{(4x)} + 7500x^{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!