本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{ln(1 - \frac{cos(x)}{1} + cos(t))}^{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln^{4}(-cos(x) + cos(t) + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln^{4}(-cos(x) + cos(t) + 1)\right)}{dx}\\=&\frac{4ln^{3}(-cos(x) + cos(t) + 1)(--sin(x) + -sin(t)*0 + 0)}{(-cos(x) + cos(t) + 1)}\\=&\frac{4ln^{3}(-cos(x) + cos(t) + 1)sin(x)}{(-cos(x) + cos(t) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!