本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{((x + 1){(2x - 1)}^{2}{\frac{1}{(4 - 3x)}}^{5})}^{\frac{1}{3}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{1}{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(4(\frac{-5(-3 + 0)}{(-3x + 4)^{6}})x^{3} + \frac{4*3x^{2}}{(-3x + 4)^{5}} - 3(\frac{-5(-3 + 0)}{(-3x + 4)^{6}})x - \frac{3}{(-3x + 4)^{5}} + (\frac{-5(-3 + 0)}{(-3x + 4)^{6}}))}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}})\\=&\frac{20x^{3}}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}(-3x + 4)^{6}} + \frac{4x^{2}}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}(-3x + 4)^{5}} - \frac{15x}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}(-3x + 4)^{6}} - \frac{1}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}(-3x + 4)^{5}} + \frac{5}{(\frac{4x^{3}}{(-3x + 4)^{5}} - \frac{3x}{(-3x + 4)^{5}} + \frac{1}{(-3x + 4)^{5}})^{\frac{2}{3}}(-3x + 4)^{6}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!