本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - \frac{1}{10}x)}{(\frac{1}{5} + x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{\frac{1}{10}x}{(x + \frac{1}{5})} + \frac{1}{(x + \frac{1}{5})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{\frac{1}{10}x}{(x + \frac{1}{5})} + \frac{1}{(x + \frac{1}{5})}\right)}{dx}\\=& - \frac{1}{10}(\frac{-(1 + 0)}{(x + \frac{1}{5})^{2}})x - \frac{\frac{1}{10}}{(x + \frac{1}{5})} + (\frac{-(1 + 0)}{(x + \frac{1}{5})^{2}})\\=&\frac{x}{10(x + \frac{1}{5})^{2}} - \frac{1}{(x + \frac{1}{5})^{2}} - \frac{1}{10(x + \frac{1}{5})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!