本次共计算 1 个题目:每一题对 x 求 7 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(1 + x + {x}^{2}) 关于 x 的 7 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x + x^{2} + 1)\\\\ &\color{blue}{函数的 7 阶导数:} \\=&\frac{92160x^{7}}{(x + x^{2} + 1)^{7}} + \frac{322560x^{6}}{(x + x^{2} + 1)^{7}} - \frac{161280x^{5}}{(x + x^{2} + 1)^{6}} + \frac{483840x^{5}}{(x + x^{2} + 1)^{7}} - \frac{403200x^{4}}{(x + x^{2} + 1)^{6}} + \frac{403200x^{4}}{(x + x^{2} + 1)^{7}} + \frac{80640x^{3}}{(x + x^{2} + 1)^{5}} + \frac{201600x^{3}}{(x + x^{2} + 1)^{7}} - \frac{403200x^{3}}{(x + x^{2} + 1)^{6}} - \frac{201600x^{2}}{(x + x^{2} + 1)^{6}} + \frac{60480x^{2}}{(x + x^{2} + 1)^{7}} + \frac{120960x^{2}}{(x + x^{2} + 1)^{5}} - \frac{10080x}{(x + x^{2} + 1)^{4}} - \frac{50400x}{(x + x^{2} + 1)^{6}} + \frac{60480x}{(x + x^{2} + 1)^{5}} + \frac{10080x}{(x + x^{2} + 1)^{7}} - \frac{5040}{(x + x^{2} + 1)^{4}} + \frac{10080}{(x + x^{2} + 1)^{5}} - \frac{5040}{(x + x^{2} + 1)^{6}} + \frac{720}{(x + x^{2} + 1)^{7}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!