本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{xln(1 + {x}^{2})}{(1 + x)} - \frac{{x}^{2}}{2} + 2ln(x + 1) + \frac{2}{(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xln(x^{2} + 1)}{(x + 1)} - \frac{1}{2}x^{2} + 2ln(x + 1) + \frac{2}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xln(x^{2} + 1)}{(x + 1)} - \frac{1}{2}x^{2} + 2ln(x + 1) + \frac{2}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})xln(x^{2} + 1) + \frac{ln(x^{2} + 1)}{(x + 1)} + \frac{x(2x + 0)}{(x + 1)(x^{2} + 1)} - \frac{1}{2}*2x + \frac{2(1 + 0)}{(x + 1)} + 2(\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{-xln(x^{2} + 1)}{(x + 1)^{2}} + \frac{ln(x^{2} + 1)}{(x + 1)} + \frac{2x^{2}}{(x + 1)(x^{2} + 1)} - x - \frac{2}{(x + 1)^{2}} + \frac{2}{(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!