本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(2 - x)}^{5}sqrt(x + 1))}{({(x + 3)}^{7})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-x^{5}sqrt(x + 1)}{(x + 3)^{7}} + \frac{10x^{4}sqrt(x + 1)}{(x + 3)^{7}} - \frac{40x^{3}sqrt(x + 1)}{(x + 3)^{7}} + \frac{80x^{2}sqrt(x + 1)}{(x + 3)^{7}} - \frac{80xsqrt(x + 1)}{(x + 3)^{7}} + \frac{32sqrt(x + 1)}{(x + 3)^{7}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-x^{5}sqrt(x + 1)}{(x + 3)^{7}} + \frac{10x^{4}sqrt(x + 1)}{(x + 3)^{7}} - \frac{40x^{3}sqrt(x + 1)}{(x + 3)^{7}} + \frac{80x^{2}sqrt(x + 1)}{(x + 3)^{7}} - \frac{80xsqrt(x + 1)}{(x + 3)^{7}} + \frac{32sqrt(x + 1)}{(x + 3)^{7}}\right)}{dx}\\=&-(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{5}sqrt(x + 1) - \frac{5x^{4}sqrt(x + 1)}{(x + 3)^{7}} - \frac{x^{5}(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} + 10(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{4}sqrt(x + 1) + \frac{10*4x^{3}sqrt(x + 1)}{(x + 3)^{7}} + \frac{10x^{4}(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} - 40(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{3}sqrt(x + 1) - \frac{40*3x^{2}sqrt(x + 1)}{(x + 3)^{7}} - \frac{40x^{3}(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} + 80(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{2}sqrt(x + 1) + \frac{80*2xsqrt(x + 1)}{(x + 3)^{7}} + \frac{80x^{2}(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} - 80(\frac{-7(1 + 0)}{(x + 3)^{8}})xsqrt(x + 1) - \frac{80sqrt(x + 1)}{(x + 3)^{7}} - \frac{80x(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} + 32(\frac{-7(1 + 0)}{(x + 3)^{8}})sqrt(x + 1) + \frac{32(1 + 0)*\frac{1}{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}}\\=&\frac{7x^{5}sqrt(x + 1)}{(x + 3)^{8}} - \frac{5x^{4}sqrt(x + 1)}{(x + 3)^{7}} - \frac{x^{5}}{2(x + 3)^{7}(x + 1)^{\frac{1}{2}}} - \frac{70x^{4}sqrt(x + 1)}{(x + 3)^{8}} + \frac{40x^{3}sqrt(x + 1)}{(x + 3)^{7}} + \frac{5x^{4}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} + \frac{280x^{3}sqrt(x + 1)}{(x + 3)^{8}} - \frac{120x^{2}sqrt(x + 1)}{(x + 3)^{7}} - \frac{20x^{3}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} - \frac{560x^{2}sqrt(x + 1)}{(x + 3)^{8}} + \frac{160xsqrt(x + 1)}{(x + 3)^{7}} + \frac{40x^{2}}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} + \frac{560xsqrt(x + 1)}{(x + 3)^{8}} - \frac{80sqrt(x + 1)}{(x + 3)^{7}} - \frac{40x}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}} - \frac{224sqrt(x + 1)}{(x + 3)^{8}} + \frac{16}{(x + 3)^{7}(x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!