本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数0.000005{x}^{6} - 0.0005{x}^{5} + 0.0168{x}^{4} - 0.2241{x}^{3} + 1.3989{x}^{2} - 3.7704x + 43.958 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 0.000005x^{6} - 0.0005x^{5} + 0.0168x^{4} - 0.2241x^{3} + 1.3989x^{2} - 3.7704x + 43.958\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 0.000005x^{6} - 0.0005x^{5} + 0.0168x^{4} - 0.2241x^{3} + 1.3989x^{2} - 3.7704x + 43.958\right)}{dx}\\=&0.000005*6x^{5} - 0.0005*5x^{4} + 0.0168*4x^{3} - 0.2241*3x^{2} + 1.3989*2x - 3.7704 + 0\\=&0.00003x^{5} - 0.0025x^{4} + 0.0672x^{3} - 0.6723x^{2} + 2.7978x - 3.7704\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 0.00003x^{5} - 0.0025x^{4} + 0.0672x^{3} - 0.6723x^{2} + 2.7978x - 3.7704\right)}{dx}\\=&0.00003*5x^{4} - 0.0025*4x^{3} + 0.0672*3x^{2} - 0.6723*2x + 2.7978 + 0\\=&0.00015x^{4} - 0.01x^{3} + 0.2016x^{2} - 1.3446x + 2.7978\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!