本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(5750{x}^{2} + 23000x + 630000)}{(1 + 0.25x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{5750x^{2}}{(0.25x + 1)} + \frac{23000x}{(0.25x + 1)} + \frac{630000}{(0.25x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{5750x^{2}}{(0.25x + 1)} + \frac{23000x}{(0.25x + 1)} + \frac{630000}{(0.25x + 1)}\right)}{dx}\\=&5750(\frac{-(0.25 + 0)}{(0.25x + 1)^{2}})x^{2} + \frac{5750*2x}{(0.25x + 1)} + 23000(\frac{-(0.25 + 0)}{(0.25x + 1)^{2}})x + \frac{23000}{(0.25x + 1)} + 630000(\frac{-(0.25 + 0)}{(0.25x + 1)^{2}})\\=&\frac{-1437.5x^{2}}{(0.25x + 1)(0.25x + 1)} + \frac{11500x}{(0.25x + 1)} - \frac{5750x}{(0.25x + 1)(0.25x + 1)} - \frac{157500}{(0.25x + 1)(0.25x + 1)} + \frac{23000}{(0.25x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!