本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x - 2)}^{2} - x(x - 1)ln(x - 1) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - x^{2}ln(x - 1) + xln(x - 1) + x^{2} - 4x + 4\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - x^{2}ln(x - 1) + xln(x - 1) + x^{2} - 4x + 4\right)}{dx}\\=& - 2xln(x - 1) - \frac{x^{2}(1 + 0)}{(x - 1)} + ln(x - 1) + \frac{x(1 + 0)}{(x - 1)} + 2x - 4 + 0\\=& - 2xln(x - 1) - \frac{x^{2}}{(x - 1)} + ln(x - 1) + \frac{x}{(x - 1)} + 2x - 4\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - 2xln(x - 1) - \frac{x^{2}}{(x - 1)} + ln(x - 1) + \frac{x}{(x - 1)} + 2x - 4\right)}{dx}\\=& - 2ln(x - 1) - \frac{2x(1 + 0)}{(x - 1)} - (\frac{-(1 + 0)}{(x - 1)^{2}})x^{2} - \frac{2x}{(x - 1)} + \frac{(1 + 0)}{(x - 1)} + (\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{1}{(x - 1)} + 2 + 0\\=& - 2ln(x - 1) - \frac{4x}{(x - 1)} + \frac{x^{2}}{(x - 1)^{2}} - \frac{x}{(x - 1)^{2}} + \frac{2}{(x - 1)} + 2\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - 2ln(x - 1) - \frac{4x}{(x - 1)} + \frac{x^{2}}{(x - 1)^{2}} - \frac{x}{(x - 1)^{2}} + \frac{2}{(x - 1)} + 2\right)}{dx}\\=& - \frac{2(1 + 0)}{(x - 1)} - 4(\frac{-(1 + 0)}{(x - 1)^{2}})x - \frac{4}{(x - 1)} + (\frac{-2(1 + 0)}{(x - 1)^{3}})x^{2} + \frac{2x}{(x - 1)^{2}} - (\frac{-2(1 + 0)}{(x - 1)^{3}})x - \frac{1}{(x - 1)^{2}} + 2(\frac{-(1 + 0)}{(x - 1)^{2}}) + 0\\=&\frac{6x}{(x - 1)^{2}} - \frac{2x^{2}}{(x - 1)^{3}} + \frac{2x}{(x - 1)^{3}} - \frac{3}{(x - 1)^{2}} - \frac{6}{(x - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!