本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ie^{\frac{2.303(x - p)}{b}}}{((1 + \frac{ie^{\frac{2.303(x - p)}{b}}}{l})F)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\right)}{dx}\\=&(\frac{-(0 + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}(\frac{2.303}{b} + 0)}{l})}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})^{2}})ie^{\frac{2.303x}{b} - \frac{2.303p}{b}} + \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}(\frac{2.303}{b} + 0)}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\\=&\frac{-2.303i^{2}Fe^{\frac{2.303x}{b} - \frac{2.303p}{b}}e^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})bl} + \frac{2.303ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})b}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!