本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sqrt((\frac{1}{(n - 1)})({(a - x)}^{2} + {(b - x)}^{2}))}{sqrt(n)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sqrt(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})}{sqrt(n)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sqrt(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})}{sqrt(n)}\right)}{dx}\\=&\frac{(-2(\frac{-(0 + 0)}{(n - 1)^{2}})ax - \frac{2a}{(n - 1)} + (\frac{-(0 + 0)}{(n - 1)^{2}})a^{2} + 0 + 2(\frac{-(0 + 0)}{(n - 1)^{2}})x^{2} + \frac{2*2x}{(n - 1)} - 2(\frac{-(0 + 0)}{(n - 1)^{2}})bx - \frac{2b}{(n - 1)} + (\frac{-(0 + 0)}{(n - 1)^{2}})b^{2} + 0)*\frac{1}{2}}{(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})^{\frac{1}{2}}sqrt(n)} + \frac{sqrt(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})*-0*\frac{1}{2}}{(n)(n)^{\frac{1}{2}}}\\=& - \frac{a}{(n - 1)(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})^{\frac{1}{2}}sqrt(n)} + \frac{2x}{(n - 1)(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})^{\frac{1}{2}}sqrt(n)} - \frac{b}{(n - 1)(\frac{-2ax}{(n - 1)} + \frac{a^{2}}{(n - 1)} + \frac{2x^{2}}{(n - 1)} - \frac{2bx}{(n - 1)} + \frac{b^{2}}{(n - 1)})^{\frac{1}{2}}sqrt(n)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!