本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数de^{r}ivN((ln(x + sqrt(1 + {x}^{2}))}^{2}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = divNe^{r}ln(x + sqrt(x^{2} + 1))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( divNe^{r}ln(x + sqrt(x^{2} + 1))\right)}{dx}\\=&divNe^{r}*0ln(x + sqrt(x^{2} + 1)) + \frac{divNe^{r}(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))}\\=&\frac{divNe^{r}}{(x + sqrt(x^{2} + 1))} + \frac{divNxe^{r}}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{divNe^{r}}{(x + sqrt(x^{2} + 1))} + \frac{divNxe^{r}}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{-(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))^{2}})divNe^{r} + \frac{divNe^{r}*0}{(x + sqrt(x^{2} + 1))} + \frac{(\frac{-(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))^{2}})divNxe^{r}}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})divNxe^{r}}{(x + sqrt(x^{2} + 1))} + \frac{divNe^{r}}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{divNxe^{r}*0}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}}\\=& - \frac{2divNxe^{r}}{(x + sqrt(x^{2} + 1))^{2}(x^{2} + 1)^{\frac{1}{2}}} - \frac{divNe^{r}}{(x + sqrt(x^{2} + 1))^{2}} - \frac{divNx^{2}e^{r}}{(x + sqrt(x^{2} + 1))^{2}(x^{2} + 1)} - \frac{divNx^{2}e^{r}}{(x^{2} + 1)^{\frac{3}{2}}(x + sqrt(x^{2} + 1))} + \frac{divNe^{r}}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!