本次共计算 1 个题目:每一题对 t 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(\frac{1}{(1 + {t}^{2})}) 关于 t 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(\frac{1}{(t^{2} + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(\frac{1}{(t^{2} + 1)})\right)}{dt}\\=&cos(\frac{1}{(t^{2} + 1)})(\frac{-(2t + 0)}{(t^{2} + 1)^{2}})\\=&\frac{-2tcos(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2tcos(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{2}}\right)}{dt}\\=&-2(\frac{-2(2t + 0)}{(t^{2} + 1)^{3}})tcos(\frac{1}{(t^{2} + 1)}) - \frac{2cos(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{2}} - \frac{2t*-sin(\frac{1}{(t^{2} + 1)})(\frac{-(2t + 0)}{(t^{2} + 1)^{2}})}{(t^{2} + 1)^{2}}\\=&\frac{8t^{2}cos(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{3}} - \frac{2cos(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{2}} - \frac{4t^{2}sin(\frac{1}{(t^{2} + 1)})}{(t^{2} + 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!