本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(\frac{(1 + {x}^{4})}{({x}^{2} + cos({x}^{3}) - 51{x}^{5})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})\right)}{dx}\\=&cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})((\frac{-(2x + -sin(x^{3})*3x^{2} - 51*5x^{4})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}})x^{4} + \frac{4x^{3}}{(x^{2} + cos(x^{3}) - 51x^{5})} + (\frac{-(2x + -sin(x^{3})*3x^{2} - 51*5x^{4})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}}))\\=&\frac{-2x^{5}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}} + \frac{3x^{6}sin(x^{3})cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}} + \frac{255x^{8}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}} + \frac{4x^{3}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})} - \frac{2xcos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}} + \frac{3x^{2}sin(x^{3})cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}} + \frac{255x^{4}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}) - 51x^{5})} + \frac{1}{(x^{2} + cos(x^{3}) - 51x^{5})})}{(x^{2} + cos(x^{3}) - 51x^{5})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!