数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 m 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{({k}^{2} - 2rkm - 2(1 - r)k + r{m}^{2})}{({k}^{2} - 2rkm - (1 - r)k + r{m}^{2})} 关于 m 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{2krm}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2k}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{k^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{rm^{2}}{(-2krm + kr - k + k^{2} + rm^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{2krm}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2k}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{k^{2}}{(-2krm + kr - k + k^{2} + rm^{2})} + \frac{rm^{2}}{(-2krm + kr - k + k^{2} + rm^{2})}\right)}{dm}\\=& - 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})krm - \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} + 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})kr + 0 - 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})k + 0 + (\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})k^{2} + 0 + (\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})rm^{2} + \frac{r*2m}{(-2krm + kr - k + k^{2} + rm^{2})}\\=&\frac{-4k^{2}r^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{6kr^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4kr^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4krm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2k^{2}rm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4k^{2}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4k^{2}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2k^{3}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2r^{2}m^{3}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2rm}{(-2krm + kr - k + k^{2} + rm^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-4k^{2}r^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{6kr^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4kr^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4krm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2k^{2}rm}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4k^{2}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{4k^{2}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2k^{3}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2kr}{(-2krm + kr - k + k^{2} + rm^{2})} - \frac{2r^{2}m^{3}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2rm}{(-2krm + kr - k + k^{2} + rm^{2})}\right)}{dm}\\=&-4(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})k^{2}r^{2}m - \frac{4k^{2}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + 6(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})kr^{2}m^{2} + \frac{6kr^{2}*2m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - 4(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})kr^{2}m - \frac{4kr^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + 4(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})krm + \frac{4kr}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - 2(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})k^{2}rm - \frac{2k^{2}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - 4(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})k^{2}r + 0 + 4(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})k^{2}r^{2} + 0 + 2(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})k^{3}r + 0 - 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})kr + 0 - 2(\frac{-2(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{3}})r^{2}m^{3} - \frac{2r^{2}*3m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + 2(\frac{-(-2kr + 0 + 0 + 0 + r*2m)}{(-2krm + kr - k + k^{2} + rm^{2})^{2}})rm + \frac{2r}{(-2krm + kr - k + k^{2} + rm^{2})}\\=&\frac{-16k^{3}r^{3}m}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{40k^{2}r^{3}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{20kr^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{32kr^{3}m^{3}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} - \frac{32k^{2}r^{3}m}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{16kr^{3}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{32k^{2}r^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} - \frac{16kr^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} - \frac{16k^{3}r^{2}m}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{8k^{2}r^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{4kr}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{8k^{2}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{4kr^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{2k^{2}r}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} - \frac{16k^{3}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{16k^{3}r^{3}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{8k^{4}r^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} + \frac{8r^{3}m^{4}}{(-2krm + kr - k + k^{2} + rm^{2})^{3}} - \frac{10r^{2}m^{2}}{(-2krm + kr - k + k^{2} + rm^{2})^{2}} + \frac{2r}{(-2krm + kr - k + k^{2} + rm^{2})}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。