本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-a(\frac{15.96x}{n} + 2)}{(12a{x}^{3}{(1 + \frac{5.32x}{n})}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-1.33}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{2}} - \frac{0.166666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-1.33}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{2}} - \frac{0.166666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{3}}\right)}{dx}\\=&\frac{-1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)nx^{2}} - \frac{1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)nx^{2}} - \frac{1.33*-2}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)x^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)x^{3}} - \frac{0.166666666666667*-3}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{4}}\\=&\frac{7.0756}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}x^{2}} + \frac{7.0756}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}x^{2}} + \frac{2.66}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.886666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.886666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.5}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!