本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-A(\frac{15.96x}{n} + 2)}{(12p{x}^{3}{(1 + \frac{5.32x}{n})}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-1.33A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{2}} - \frac{0.166666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-1.33A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{2}} - \frac{0.166666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{3}}\right)}{dx}\\=&\frac{-1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)npx^{2}} - \frac{1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)npx^{2}} - \frac{1.33A*-2}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)px^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)px^{3}} - \frac{0.166666666666667A*-3}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{4}}\\=&\frac{7.0756A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}px^{2}} + \frac{7.0756A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}px^{2}} + \frac{2.66A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.886666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.886666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.5A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!