数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 k 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(\frac{({k}^{2} - 2rkm - 2(1 - r)k + r{m}^{2})}{({k}^{2} - 2rkm - (1 - r)k + r{m}^{2})} + \frac{({k}^{2} - 2rkm - 2(1 - r)k + r{m}^{2})}{(m(m - 1)(1 - r))}) 关于 k 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{k^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2rmk}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2k}{(k^{2} - 2rmk - k + rk + rm^{2})} + \frac{2rk}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2rmk}{(m^{2} - rm^{2} - m + rm)} + \frac{k^{2}}{(m^{2} - rm^{2} - m + rm)} + \frac{rm^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2k}{(m^{2} - rm^{2} - m + rm)} + \frac{2rk}{(m^{2} - rm^{2} - m + rm)} + \frac{rm^{2}}{(m^{2} - rm^{2} - m + rm)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{k^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2rmk}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2k}{(k^{2} - 2rmk - k + rk + rm^{2})} + \frac{2rk}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2rmk}{(m^{2} - rm^{2} - m + rm)} + \frac{k^{2}}{(m^{2} - rm^{2} - m + rm)} + \frac{rm^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{2k}{(m^{2} - rm^{2} - m + rm)} + \frac{2rk}{(m^{2} - rm^{2} - m + rm)} + \frac{rm^{2}}{(m^{2} - rm^{2} - m + rm)}\right)}{dk}\\=&(\frac{-(2k - 2rm - 1 + r + 0)}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}})k^{2} + \frac{2k}{(k^{2} - 2rmk - k + rk + rm^{2})} - 2(\frac{-(2k - 2rm - 1 + r + 0)}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}})rmk - \frac{2rm}{(k^{2} - 2rmk - k + rk + rm^{2})} - 2(\frac{-(2k - 2rm - 1 + r + 0)}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}})k - \frac{2}{(k^{2} - 2rmk - k + rk + rm^{2})} + 2(\frac{-(2k - 2rm - 1 + r + 0)}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}})rk + \frac{2r}{(k^{2} - 2rmk - k + rk + rm^{2})} - 2(\frac{-(0 + 0 + 0 + 0)}{(m^{2} - rm^{2} - m + rm)^{2}})rmk - \frac{2rm}{(m^{2} - rm^{2} - m + rm)} + (\frac{-(0 + 0 + 0 + 0)}{(m^{2} - rm^{2} - m + rm)^{2}})k^{2} + \frac{2k}{(m^{2} - rm^{2} - m + rm)} + (\frac{-(2k - 2rm - 1 + r + 0)}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}})rm^{2} + 0 - 2(\frac{-(0 + 0 + 0 + 0)}{(m^{2} - rm^{2} - m + rm)^{2}})k - \frac{2}{(m^{2} - rm^{2} - m + rm)} + 2(\frac{-(0 + 0 + 0 + 0)}{(m^{2} - rm^{2} - m + rm)^{2}})rk + \frac{2r}{(m^{2} - rm^{2} - m + rm)} + (\frac{-(0 + 0 + 0 + 0)}{(m^{2} - rm^{2} - m + rm)^{2}})rm^{2} + 0\\=&\frac{-2k^{3}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{6rmk^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{5rk^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{5k^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{2k}{(k^{2} - 2rmk - k + rk + rm^{2})} - \frac{4r^{2}m^{2}k}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{6r^{2}mk}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{6rmk}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{2rm^{2}k}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{4rk}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{2k}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{2rm}{(m^{2} - rm^{2} - m + rm)} - \frac{2r^{2}k}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} - \frac{2rm}{(k^{2} - 2rmk - k + rk + rm^{2})} + \frac{2r^{2}m^{3}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{2k}{(m^{2} - rm^{2} - m + rm)} - \frac{r^{2}m^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{rm^{2}}{(k^{2} - 2rmk - k + rk + rm^{2})^{2}} + \frac{2r}{(k^{2} - 2rmk - k + rk + rm^{2})} + \frac{2r}{(m^{2} - rm^{2} - m + rm)} - \frac{2}{(m^{2} - rm^{2} - m + rm)} - \frac{2}{(k^{2} - 2rmk - k + rk + rm^{2})}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。