本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(a{x}^{2} + {sin(x)}^{2})}{lg(x)} - sec(b)x 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ax^{2}}{lg(x)} + \frac{sin^{2}(x)}{lg(x)} - xsec(b)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ax^{2}}{lg(x)} + \frac{sin^{2}(x)}{lg(x)} - xsec(b)\right)}{dx}\\=&\frac{a*2x}{lg(x)} + \frac{ax^{2}*-1}{lg^{2}(x)ln{10}(x)} + \frac{-sin^{2}(x)}{lg^{2}(x)ln{10}(x)} + \frac{2sin(x)cos(x)}{lg(x)} - sec(b) - xsec(b)tan(b)*0\\=&\frac{2ax}{lg(x)} - \frac{ax}{ln{10}lg^{2}(x)} - \frac{sin^{2}(x)}{xln{10}lg^{2}(x)} + \frac{2sin(x)cos(x)}{lg(x)} - sec(b)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!