本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{({(61.1 + x)}^{2})}{20000} + 1)(311 + 2099.468 - \frac{3865x}{330}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 0.000585606060606061x^{3} - 0.0357805303030303x^{2} - 0.0357805303030303x^{2} - 2.18619040151515x + 0.1049734x^{2} + 6.41387474x + 6.41387474x + 0.01555x^{2} + 0.950105x + 0.950105x - 11.7121212121212x + 2860.407162114\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - 0.000585606060606061x^{3} - 0.0357805303030303x^{2} - 0.0357805303030303x^{2} - 2.18619040151515x + 0.1049734x^{2} + 6.41387474x + 6.41387474x + 0.01555x^{2} + 0.950105x + 0.950105x - 11.7121212121212x + 2860.407162114\right)}{dx}\\=& - 0.000585606060606061*3x^{2} - 0.0357805303030303*2x - 0.0357805303030303*2x - 2.18619040151515 + 0.1049734*2x + 6.41387474 + 6.41387474 + 0.01555*2x + 0.950105 + 0.950105 - 11.7121212121212 + 0\\=& - 0.00175681818181818x^{2} - 0.0715610606060606x - 0.0715610606060606x + 0.2099468x + 0.0311x + 0.829647866363636\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!