本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(40{x}^{4} - 80{x}^{3})}^{\frac{1}{2}} - ({x}^{3} - 2{x}^{2}) - {(40{x}^{6} - 80{x}^{5})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (40x^{4} - 80x^{3})^{\frac{1}{2}} - x^{3} + 2x^{2} - (40x^{6} - 80x^{5})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (40x^{4} - 80x^{3})^{\frac{1}{2}} - x^{3} + 2x^{2} - (40x^{6} - 80x^{5})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(40*4x^{3} - 80*3x^{2})}{(40x^{4} - 80x^{3})^{\frac{1}{2}}}) - 3x^{2} + 2*2x - (\frac{\frac{1}{2}(40*6x^{5} - 80*5x^{4})}{(40x^{6} - 80x^{5})^{\frac{1}{2}}})\\=&\frac{80x^{3}}{(40x^{4} - 80x^{3})^{\frac{1}{2}}} - \frac{120x^{2}}{(40x^{4} - 80x^{3})^{\frac{1}{2}}} - 3x^{2} + 4x - \frac{120x^{5}}{(40x^{6} - 80x^{5})^{\frac{1}{2}}} + \frac{200x^{4}}{(40x^{6} - 80x^{5})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!