本次共计算 1 个题目:每一题对 x 求 9 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt({x}^{2} - 16x + 8) 关于 x 的 9 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(x^{2} - 16x + 8)\\\\ &\color{blue}{函数的 9 阶导数:} \\=&\frac{2027025x^{9}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{145945800x^{8}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{4864860x^{7}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{4670265600x^{7}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{272432160x^{6}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{87178291200x^{6}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{3929310x^{5}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{6538371840x^{5}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{1046139494400x^{5}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{157172400x^{4}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} + \frac{87178291200x^{4}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{8369115955200x^{4}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{1190700x^{3}}{(x^{2} - 16x + 8)^{\frac{11}{2}}} + \frac{2514758400x^{3}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{697426329600x^{3}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{44635285094400x^{3}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{28576800x^{2}}{(x^{2} - 16x + 8)^{\frac{11}{2}}} - \frac{20118067200x^{2}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} + \frac{3347646382080x^{2}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{153035263180800x^{2}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{99225x}{(x^{2} - 16x + 8)^{\frac{9}{2}}} - \frac{228614400x}{(x^{2} - 16x + 8)^{\frac{11}{2}}} + \frac{80472268800x}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{8927057018880x}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{306070526361600x}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{609638400}{(x^{2} - 16x + 8)^{\frac{11}{2}}} - \frac{128755630080}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{793800}{(x^{2} - 16x + 8)^{\frac{9}{2}}} + \frac{10202350878720}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{272062690099200}{(x^{2} - 16x + 8)^{\frac{17}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!