本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(sin(x) + ln(x))sqrt({x}^{2} + cos(x)) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x)sqrt(x^{2} + cos(x)) + ln(x)sqrt(x^{2} + cos(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)sqrt(x^{2} + cos(x)) + ln(x)sqrt(x^{2} + cos(x))\right)}{dx}\\=&cos(x)sqrt(x^{2} + cos(x)) + \frac{sin(x)(2x + -sin(x))*\frac{1}{2}}{(x^{2} + cos(x))^{\frac{1}{2}}} + \frac{sqrt(x^{2} + cos(x))}{(x)} + \frac{ln(x)(2x + -sin(x))*\frac{1}{2}}{(x^{2} + cos(x))^{\frac{1}{2}}}\\=&cos(x)sqrt(x^{2} + cos(x)) + \frac{xsin(x)}{(x^{2} + cos(x))^{\frac{1}{2}}} - \frac{sin^{2}(x)}{2(x^{2} + cos(x))^{\frac{1}{2}}} + \frac{sqrt(x^{2} + cos(x))}{x} + \frac{xln(x)}{(x^{2} + cos(x))^{\frac{1}{2}}} - \frac{ln(x)sin(x)}{2(x^{2} + cos(x))^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!