数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(xx + x + 11)sqrt(xxx + 5x + 121) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}sqrt(x^{3} + 5x + 121) + xsqrt(x^{3} + 5x + 121) + 11sqrt(x^{3} + 5x + 121)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}sqrt(x^{3} + 5x + 121) + xsqrt(x^{3} + 5x + 121) + 11sqrt(x^{3} + 5x + 121)\right)}{dx}\\=&2xsqrt(x^{3} + 5x + 121) + \frac{x^{2}(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + sqrt(x^{3} + 5x + 121) + \frac{x(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{11(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}}\\=&2xsqrt(x^{3} + 5x + 121) + \frac{3x^{4}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{19x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + sqrt(x^{3} + 5x + 121) + \frac{3x^{3}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{5x}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{55}{2(x^{3} + 5x + 121)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2xsqrt(x^{3} + 5x + 121) + \frac{3x^{4}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{19x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + sqrt(x^{3} + 5x + 121) + \frac{3x^{3}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{5x}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{55}{2(x^{3} + 5x + 121)^{\frac{1}{2}}}\right)}{dx}\\=&2sqrt(x^{3} + 5x + 121) + \frac{2x(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{3(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{4}}{2} + \frac{3*4x^{3}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + 19(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{2} + \frac{19*2x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{3(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{3}}{2} + \frac{3*3x^{2}}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{5(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x}{2} + \frac{5}{2(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{55(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})}{2}\\=&2sqrt(x^{3} + 5x + 121) + \frac{9x^{3}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{43x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{9x^{6}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{129x^{4}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{9x^{5}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{15x^{3}}{2(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{6x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{355x^{2}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{25x}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{275}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{5}{(x^{3} + 5x + 121)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2sqrt(x^{3} + 5x + 121) + \frac{9x^{3}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{43x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{9x^{6}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{129x^{4}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{9x^{5}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{15x^{3}}{2(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{6x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{355x^{2}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{25x}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{275}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{5}{(x^{3} + 5x + 121)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{2(3x^{2} + 5 + 0)*\frac{1}{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + 9(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{3} + \frac{9*3x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + 43(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x + \frac{43}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{9(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{6}}{4} - \frac{9*6x^{5}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{129(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{4}}{4} - \frac{129*4x^{3}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{9(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{5}}{4} - \frac{9*5x^{4}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{15(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{3}}{2} - \frac{15*3x^{2}}{2(x^{3} + 5x + 121)^{\frac{3}{2}}} + 6(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{2} + \frac{6*2x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} - \frac{355(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{2}}{4} - \frac{355*2x}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{25(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x}{4} - \frac{25}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{275(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})}{4} + 5(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})\\=&\frac{30x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{81x^{8}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{27x^{5}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{216x^{3}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{162x^{6}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{81x^{7}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{405x^{5}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{2565x^{4}}{4(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{81x^{4}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{675x^{3}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{45x^{2}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{285x}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{12x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{975x^{2}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{375x}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{48}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{4125}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{75}{4(x^{3} + 5x + 121)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{30x^{2}}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{81x^{8}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{27x^{5}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{216x^{3}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{162x^{6}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{81x^{7}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{405x^{5}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{2565x^{4}}{4(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{81x^{4}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{675x^{3}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{45x^{2}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{285x}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{12x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{975x^{2}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{375x}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{48}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{4125}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{75}{4(x^{3} + 5x + 121)^{\frac{3}{2}}}\right)}{dx}\\=&30(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x^{2} + \frac{30*2x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{81(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{8}}{8} + \frac{81*8x^{7}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - 27(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{5} - \frac{27*5x^{4}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - 216(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{3} - \frac{216*3x^{2}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + 162(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{6} + \frac{162*6x^{5}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{81(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{7}}{8} + \frac{81*7x^{6}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{405(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{5}}{8} + \frac{405*5x^{4}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{2565(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{4}}{4} + \frac{2565*4x^{3}}{4(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{81(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{4}}{4} - \frac{81*4x^{3}}{4(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{675(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{3}}{8} + \frac{675*3x^{2}}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} - 45(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x^{2} - \frac{45*2x}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - 285(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})x - \frac{285}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + 12(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}})x + \frac{12}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + 975(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x^{2} + \frac{975*2x}{(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{375(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})x}{8} + \frac{375}{8(x^{3} + 5x + 121)^{\frac{5}{2}}} + 48(\frac{\frac{-1}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{3}{2}}}) + \frac{4125(\frac{\frac{-5}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{7}{2}}})}{8} - \frac{75(\frac{\frac{-3}{2}(3x^{2} + 5 + 0)}{(x^{3} + 5x + 121)^{\frac{5}{2}}})}{4}\\=&\frac{-180x^{4}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{1215x^{10}}{16(x^{3} + 5x + 121)^{\frac{7}{2}}} + \frac{60x}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{405x^{7}}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{4293x^{5}}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{21465x^{8}}{16(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{1215x^{9}}{16(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{2025x^{7}}{4(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{54675x^{6}}{8(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{795x^{2}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{162x^{6}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{10125x^{5}}{8(x^{3} + 5x + 121)^{\frac{7}{2}}} + \frac{1215x^{4}}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} + \frac{10935x^{3}}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{99x^{3}}{(x^{3} + 5x + 121)^{\frac{3}{2}}} - \frac{122625x^{4}}{8(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{5625x^{3}}{4(x^{3} + 5x + 121)^{\frac{7}{2}}} + \frac{675x^{2}}{(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{120x}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{8175x}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{256875x^{2}}{16(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{9375x}{16(x^{3} + 5x + 121)^{\frac{7}{2}}} - \frac{405}{(x^{3} + 5x + 121)^{\frac{3}{2}}} + \frac{12}{(x^{3} + 5x + 121)^{\frac{1}{2}}} + \frac{375}{2(x^{3} + 5x + 121)^{\frac{5}{2}}} - \frac{103125}{16(x^{3} + 5x + 121)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。