Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.796 = y/78/(y/78+(1-y)/106) .
    Question type: Equation
    Solution:Original question:
     
199
250
= y ÷ 78 ÷ ( y ÷ 78 + (1 y ) ÷ 106)
     Multiply both sides of the equation by:( y ÷ 78 + (1 y ) ÷ 106)
     
199
250
( y ÷ 78 + (1 y ) ÷ 106) = y ÷ 78
    Remove a bracket on the left of the equation::
     
199
250
y ÷ 78 +
199
250
(1 y ) ÷ 106 = y ÷ 78
    The equation is reduced to :
     
199
19500
y +
199
26500
(1 y ) = y ×
1
78
    Remove a bracket on the left of the equation:
     
199
19500
y +
199
26500
× 1
199
26500
y =
1
78
y
    The equation is reduced to :
     
199
19500
y +
199
26500
199
26500
y =
1
78
y
    The equation is reduced to :
     
1393
516750
y +
199
26500
=
1
78
y

    Transposition :
     
1393
516750
y
1
78
y = -
199
26500

    Combine the items on the left of the equation:
      -
872
86125
y = -
199
26500

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
199
26500
=
872
86125
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
872
86125
y =
199
26500

    The coefficient of the unknown number is reduced to 1 :
      y =
199
26500
÷
872
86125
        =
199
26500
×
86125
872
        =
199
212
×
689
872

    We obtained :
      y =
137111
184864
    This is the solution of the equation.

    By reducing fraction, we can get:
      y =
2587
3488

    Convert the result to decimal form :
      y = 0.741686



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。