Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (X*700+(10-X)*1200)*(1-0.31) = 700*0.6*X+(10-X)*1200*0.9 .
    Question type: Equation
    Solution:Original question:
     ( X × 700 + (10 X ) × 1200)(1
31
100
) = 700 ×
3
5
X + (10 X ) × 1200 ×
9
10
    Remove the bracket on the left of the equation:
     Left side of the equation = X × 700(1
31
100
) + (10 X ) × 1200(1
31
100
)
                                             = X × 700 × 1 X × 700 ×
31
100
+ (10 X ) × 1200(1
31
100
)
                                             = X × 700 X × 217 + (10 X ) × 1200(1
31
100
)
                                             = 483 X + (10 X ) × 1200(1
31
100
)
                                             = 483 X + 10 × 1200(1
31
100
) X × 1200(1
31
100
)
                                             = 483 X + 12000(1
31
100
) X × 1200(1
31
100
)
                                             = 483 X + 12000 × 112000 ×
31
100
X × 1200(1
31
100
)
                                             = 483 X + 120003720 X × 1200(1
31
100
)
                                             = 483 X + 8280 X × 1200(1
31
100
)
                                             = 483 X + 8280 X × 1200 × 1 + X × 1200 ×
31
100
                                             = 483 X + 8280 X × 1200 + X × 372
                                             = - 345 X + 8280
    The equation is transformed into :
      - 345 X + 8280 = 700 ×
3
5
X + (10 X ) × 1200 ×
9
10
     Right side of the equation = 420 X + (10 X ) × 1080
    The equation is transformed into :
      - 345 X + 8280 = 420 X + (10 X ) × 1080
    Remove the bracket on the right of the equation:
     Right side of the equation = 420 X + 10 × 1080 X × 1080
                                               = 420 X + 10800 X × 1080
                                               = - 660 X + 10800
    The equation is transformed into :
      - 345 X + 8280 = - 660 X + 10800

    Transposition :
      - 345 X + 660 X = 108008280

    Combine the items on the left of the equation:
     315 X = 108008280

    Combine the items on the right of the equation:
     315 X = 2520

    The coefficient of the unknown number is reduced to 1 :
      X = 2520 ÷ 315
        = 2520 ×
1
315
        = 8 × 1

    We obtained :
      X = 8
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。