Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 6(2-X)+(X-2)(2-X) = (X-14)(X-2) .
    Question type: Equation
    Solution:Original question:
     6(2 X ) + ( X 2)(2 X ) = ( X 14)( X 2)
    Remove the bracket on the left of the equation:
     Left side of the equation = 6 × 26 X + ( X 2)(2 X )
                                             = 126 X + ( X 2)(2 X )
                                             = 126 X + X (2 X )2(2 X )
                                             = 126 X + X × 2 X X 2(2 X )
                                             = 124 X X X 2(2 X )
                                             = 124 X X X 2 × 2 + 2 X
                                             = 124 X X X 4 + 2 X
                                             = 82 X X X
    The equation is transformed into :
     82 X X X = ( X 14)( X 2)
    Remove the bracket on the right of the equation:
     Right side of the equation = X ( X 2)14( X 2)
                                               = X X X × 214( X 2)
                                               = X X 2 X 14 X + 14 × 2
                                               = X X 2 X 14 X + 28
                                               = X X 16 X + 28
    The equation is transformed into :
     82 X X X = X X 16 X + 28

    After the equation is converted into a general formula, it is converted into:
    ( X - 2 )( X - 5 )=0
    From
        X - 2 = 0
        X - 5 = 0

    it is concluded that::
        X1=2
        X2=5
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。