Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (15-x)/3.3 = (x-0.5-4.2)/4+(x-1.4)/3.33 .
    Question type: Equation
    Solution:Original question:
     (15 x ) ÷
33
10
= ( x
1
2
21
5
) ÷ 4 + ( x
7
5
) ÷
333
100
    Remove the bracket on the left of the equation:
     Left side of the equation = 15 ×
10
33
x ×
10
33
                                             =
50
11
x ×
10
33
    The equation is transformed into :
     
50
11
10
33
x = ( x
1
2
21
5
) ÷ 4 + ( x
7
5
) ÷
333
100
    Remove the bracket on the right of the equation:
     Right side of the equation = x ×
1
4
1
2
×
1
4
21
5
×
1
4
+ ( x
7
5
) ×
100
333
                                               = x ×
1
4
1
8
21
20
+ ( x
7
5
) ×
100
333
                                               =
1
4
x
47
40
+ ( x
7
5
) ×
100
333
                                               =
1
4
x
47
40
+ x ×
100
333
7
5
×
100
333
                                               =
1
4
x
47
40
+ x ×
100
333
140
333
                                               =
733
1332
x
21251
13320
    The equation is transformed into :
     
50
11
10
33
x =
733
1332
x
21251
13320

    Transposition :
      -
10
33
x
733
1332
x = -
21251
13320
50
11

    Combine the items on the left of the equation:
      -
12503
14652
x = -
21251
13320
50
11

    Combine the items on the right of the equation:
      -
12503
14652
x = -
899761
146520

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
899761
146520
=
12503
14652
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
12503
14652
x =
899761
146520

    The coefficient of the unknown number is reduced to 1 :
      x =
899761
146520
÷
12503
14652
        =
899761
146520
×
14652
12503
        =
899761
10
×
1
12503

    We obtained :
      x =
899761
125030
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 7.196361



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。