Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2016-x)/2015+(2018-x)/2017 = (2020-x)/2019+(2022-x)/2021 .
    Question type: Equation
    Solution:Original question:
     (2016 x ) ÷ 2015 + (2018 x ) ÷ 2017 = (2020 x ) ÷ 2019 + (2022 x ) ÷ 2021
    Remove the bracket on the left of the equation:
     Left side of the equation = 2016 ×
1
2015
x ×
1
2015
+ (2018 x ) ×
1
2017
                                             =
2016
2015
x ×
1
2015
+ (2018 x ) ×
1
2017
                                             =
2016
2015
1
2015
x + 2018 ×
1
2017
x ×
1
2017
                                             =
2016
2015
1
2015
x +
2018
2017
x ×
1
2017
                                             =
8132542
4064255
4032
4064255
x
    The equation is transformed into :
     
8132542
4064255
4032
4064255
x = (2020 x ) ÷ 2019 + (2022 x ) ÷ 2021
    Remove the bracket on the right of the equation:
     Right side of the equation = 2020 ×
1
2019
x ×
1
2019
+ (2022 x ) ×
1
2021
                                               =
2020
2019
x ×
1
2019
+ (2022 x ) ×
1
2021
                                               =
2020
2019
1
2019
x + 2022 ×
1
2021
x ×
1
2021
                                               =
2020
2019
1
2019
x +
2022
2021
x ×
1
2021
                                               =
8164838
4080399
4040
4080399
x
    The equation is transformed into :
     
8132542
4064255
4032
4064255
x =
8164838
4080399
4040
4080399
x

    Transposition :
      -
4032
4064255
x +
4040
4080399
x =
8164838
4080399
8132542
4064255

    
        x=1
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。