Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2.29x)/(1+1.29x) = (0.91x)/(-0.09)-(0.44)/(0.09) .
    Question type: Equation
    Solution:Original question:
     (
229
100
x ) ÷ (1 +
129
100
x ) = (
91
100
x ) ÷ ( -
9
100
)(
11
25
) ÷ (
9
100
)
     Multiply both sides of the equation by:(1 +
129
100
x ) ,  ( -
9
100
)
     (
229
100
x )( -
9
100
) = (
91
100
x )(1 +
129
100
x )(
11
25
) ÷ (
9
100
) × (1 +
129
100
x )( -
9
100
)
    Remove a bracket on the left of the equation::
     
229
100
x ( -
9
100
) = (
91
100
x )(1 +
129
100
x )(
11
25
) ÷ (
9
100
) × (1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
     
229
100
x ( -
9
100
) =
91
100
x (1 +
129
100
x )(
11
25
) ÷ (
9
100
) × (1 +
129
100
x )( -
9
100
)
     Multiply both sides of the equation by:(
9
100
)
     
229
100
x ( -
9
100
)(
9
100
) =
91
100
x (1 +
129
100
x )(
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the left of the equation:
      -
229
100
x ×
9
100
(
9
100
) =
91
100
x (1 +
129
100
x )(
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
      -
229
100
x ×
9
100
(
9
100
) =
91
100
x × 1(
9
100
) +
91
100
x ×
129
100
x (
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    The equation is reduced to :
      -
2061
10000
x (
9
100
) =
91
100
x (
9
100
) +
11739
10000
x x (
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the left of the equation:
      -
2061
10000
x ×
9
100
=
91
100
x (
9
100
) +
11739
10000
x x (
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
      -
2061
10000
x ×
9
100
=
91
100
x ×
9
100
+
11739
10000
x x (
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    The equation is reduced to :
      -
18549
1000000
x =
819
10000
x +
11739
10000
x x (
9
100
)(
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
      -
18549
1000000
x =
819
10000
x +
11739
10000
x x ×
9
100
(
11
25
)(1 +
129
100
x )( -
9
100
)
    The equation is reduced to :
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x (
11
25
)(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x
11
25
(1 +
129
100
x )( -
9
100
)
    Remove a bracket on the right of the equation::
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x
11
25
× 1( -
9
100
)
11
25
×
129
100
x ( -
9
100
)
    The equation is reduced to :
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x
11
25
( -
9
100
)
1419
2500
x ( -
9
100
)
    Remove a bracket on the right of the equation::
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x +
11
25
×
9
100
1419
2500
x ( -
9
100
)
    The equation is reduced to :
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x +
99
2500
1419
2500
x ( -
9
100
)
    Remove a bracket on the right of the equation::
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x +
99
2500
+
1419
2500
x ×
9
100
    The equation is reduced to :
      -
18549
1000000
x =
819
10000
x +
105651
1000000
x x +
99
2500
+
12771
250000
x
    The equation is reduced to :
      -
18549
1000000
x =
16623
125000
x +
105651
1000000
x x +
99
2500

    After the equation is converted into a general formula, there is a common factor:
    ( x +0 )
    From
        x + 0 = 0

    it is concluded that::
        x1=0

    Solutions that cannot be obtained by factorization:
        x2≈-0.775194 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。