Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 31500+(2500+125/2a)*(5-3/80a)-44000-200a = 0 .
    Question type: Equation
    Solution:Original question:
     31500 + (2500 + 125 ÷ 2 × a )(53 ÷ 80 × a )44000200 a = 0
     Left side of the equation = - 12500 + (2500 + 125 ÷ 2 × a )(53 ÷ 80 × a )200 a
    The equation is transformed into :
      - 12500 + (2500 + 125 ÷ 2 × a )(53 ÷ 80 × a )200 a = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = - 12500 + 2500(53 ÷ 80 × a ) + 125 ÷ 2 × a (53 ÷ 80 × a )200 a
                                             = - 12500 + 2500(53 ÷ 80 × a ) +
125
2
a (53 ÷ 80 × a )200 a
                                             = - 12500 + 2500 × 52500 × 3 ÷ 80 × a +
125
2
a (53 ÷ 80 × a )200 a
                                             = - 12500 + 12500
375
4
a +
125
2
a (53 ÷ 80 × a )200 a
                                             = - 0
1175
4
a +
125
2
a (53 ÷ 80 × a )
                                             = - 0
1175
4
a +
125
2
a × 5
125
2
a × 3 ÷ 80 × a
                                             = - 0
1175
4
a +
625
2
a
75
32
a a
                                             = - 0 +
75
4
a
75
32
a a
    The equation is transformed into :
      - 0 +
75
4
a
75
32
a a = 0

    After the equation is converted into a general formula, it is converted into:
    ( a +0 )( a - 8 )=0
    From
        a + 0 = 0
        a - 8 = 0

    it is concluded that::
        a1=0
        a2=8
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。