Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.033*(0.5+0.066*(x-0.2/0.033)/2)/(1+(0.25+0.033*(x-0.2/0.033)/2)*(0.5+0.066*(x-0.2/0.033)/2)) = 0.05/(1+0.05x) .
    Question type: Equation
    Solution:Original question:
     
33
1000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) ÷ (1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)) =
1
20
÷ (1 +
1
20
x )
     Multiply both sides of the equation by:(1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)) ,  (1 +
1
20
x )
     
33
1000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)(1 +
1
20
x ) =
1
20
(1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2))
    Remove a bracket on the left of the equation::
     
33
1000
×
1
2
(1 +
1
20
x ) +
33
1000
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 × (1 +
1
20
x ) =
1
20
(1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2))
    Remove a bracket on the right of the equation::
     
33
1000
×
1
2
(1 +
1
20
x ) +
33
1000
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 × (1 +
1
20
x ) =
1
20
× 1 +
1
20
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    The equation is reduced to :
     
33
2000
(1 +
1
20
x ) +
1089
1000000
( x
1
5
÷
33
1000
)(1 +
1
20
x ) =
1
20
+
1
20
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the left of the equation:
     
33
2000
× 1 +
33
2000
×
1
20
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 +
1
20
x ) =
1
20
+
1
20
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the right of the equation::
     
33
2000
× 1 +
33
2000
×
1
20
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 +
1
20
x ) =
1
20
+
1
20
×
1
4
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
1
20
×
33
1000
( x
1
5
÷
33
1000
) ÷ 2 × (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    The equation is reduced to :
     
33
2000
+
33
40000
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 +
1
20
x ) =
1
20
+
1
80
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the left of the equation:
     
33
2000
+
33
40000
x +
1089
1000000
x (1 +
1
20
x )
1089
1000000
×
1
5
÷
33
1000
× (1 +
1
20
x ) =
1
20
+
1
80
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the right of the equation::
     
33
2000
+
33
40000
x +
1089
1000000
x (1 +
1
20
x )
1089
1000000
×
1
5
÷
33
1000
× (1 +
1
20
x ) =
1
20
+
1
80
×
1
2
+
1
80
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    The equation is reduced to :
     
33
2000
+
33
40000
x +
1089
1000000
x (1 +
1
20
x )
33
5000
(1 +
1
20
x ) =
1
20
+
1
160
+
33
80000
( x
1
5
÷
33
1000
) +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    The equation is reduced to :
     
33
2000
+
33
40000
x +
1089
1000000
x (1 +
1
20
x )
33
5000
(1 +
1
20
x ) =
9
160
+
33
80000
( x
1
5
÷
33
1000
) +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the left of the equation:
     
33
2000
+
33
40000
x +
1089
1000000
x × 1 +
1089
1000000
x ×
1
20
x
33
5000
(1 +
1
20
x ) =
9
160
+
33
80000
( x
1
5
÷
33
1000
) +
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    Remove a bracket on the right of the equation::
     
33
2000
+
33
40000
x +
1089
1000000
x × 1 +
1089
1000000
x ×
1
20
x
33
5000
(1 +
1
20
x ) =
9
160
+
33
80000
x
33
80000
×
1
5
÷
33
1000
+
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
    The equation is reduced to :
     
33
2000
+
33
40000
x +
1089
1000000
x +
1089
20000000
x x
33
5000
(1 +
1
20
x ) =
9
160
+
33
80000
x
1
400
+
33
40000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)

    After the equation is converted into a general formula, there is a common factor:
    ( √100000x +√412442211 )
    From
        √100000x +√412442211 = 0

    it is concluded that::
        x1=-
√412442211
√100000

    Solutions that cannot be obtained by factorization:
        x2≈24.221664 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。