4 25 | ÷ | ( | 1 | − | 4 25 | x | ) | + | 7 50 | ÷ | ( | 1 | − | 7 50 | x | ) | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | − | 2 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | − | 4 25 | x | ) |
4 25 | + | 7 50 | ÷ | ( | 1 | − | 7 50 | x | ) | × | ( | 1 | − | 4 25 | x | ) | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | = | 0 |
4 25 | + | 7 50 | ÷ | ( | 1 | − | 7 50 | x | ) | × | 1 | − | 7 50 | ÷ | ( | 1 | − | 7 50 | x | ) | × | 4 25 | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | − | 2 | = | 0 |
4 25 | + | 7 50 | ÷ | ( | 1 | − | 7 50 | x | ) | − | 14 625 | ÷ | ( | 1 | − | 7 50 | x | ) | × | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | − | 7 50 | x | ) |
4 25 | ( | 1 | − | 7 50 | x | ) | + | 7 50 | − | 14 625 | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
4 25 | × | 1 | − | 4 25 | × | 7 50 | x | + | 7 50 | − | 14 625 | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
4 25 | − | 14 625 | x | + | 7 50 | − | 14 625 | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | = | 0 |
3 10 | − | 28 625 | x | + | 6 25 | ÷ | ( | 1 | − | 6 25 | x | ) | × | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | − | 6 25 | x | ) |
3 10 | ( | 1 | − | 6 25 | x | ) | − | 28 625 | x | ( | 1 | − | 6 25 | x | ) | + | 6 25 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | ( | 1 | − | 6 25 | x | ) | = | 0 |
3 10 | × | 1 | − | 3 10 | × | 6 25 | x | − | 28 625 | x | ( | 1 | − | 6 25 | x | ) | + | 6 25 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | = | 0 |
3 10 | − | 9 125 | x | − | 28 625 | x | ( | 1 | − | 6 25 | x | ) | + | 6 25 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
3 10 | − | 9 125 | x | − | 28 625 | x | × | 1 | + | 28 625 | x | × | 6 25 | x | + | 6 25 | ( | 1 | − | 4 25 | x | ) | = | 0 |
3 10 | − | 9 125 | x | − | 28 625 | x | + | 168 15625 | x | x | + | 6 25 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | = | 0 |
3 10 | − | 73 625 | x | + | 168 15625 | x | x | + | 6 25 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
3 10 | − | 73 625 | x | + | 168 15625 | x | x | + | 6 25 | × | 1 | ( | 1 | − | 7 50 | x | ) | − | 6 25 | × | 4 25 | x | = | 0 |
3 10 | − | 73 625 | x | + | 168 15625 | x | x | + | 6 25 | ( | 1 | − | 7 50 | x | ) | − | 24 625 | x | ( | 1 | − | 7 50 | x | ) | − | 2 | = | 0 |
3 10 | − | 73 625 | x | + | 168 15625 | x | x | + | 6 25 | × | 1 | − | 6 25 | × | 7 50 | x | − | 24 625 | = | 0 |
3 10 | − | 73 625 | x | + | 168 15625 | x | x | + | 6 25 | − | 21 625 | x | − | 24 625 | x | ( | 1 | − | 7 50 | x | ) | = | 0 |
27 50 | − | 94 625 | x | + | 168 15625 | x | x | − | 24 625 | x | ( | 1 | − | 7 50 | x | ) | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
27 50 | − | 94 625 | x | + | 168 15625 | x | x | − | 24 625 | x | × | 1 | + | 24 625 | x | × | 7 50 | = | 0 |
27 50 | − | 94 625 | x | + | 168 15625 | x | x | − | 24 625 | x | + | 84 15625 | x | x | − | 2 | = | 0 |
27 50 | − | 118 625 | x | + | 168 15625 | x | x | + | 84 15625 | x | x | − | 2 | ( | 1 | − | 4 25 | x | ) | ( | 1 | − | 7 50 | x | ) | = | 0 |
27 50 | − | 118 625 | x | + | 168 15625 | x | x | + | 84 15625 | x | x | − | 2 | × | 1 | ( | 1 | − | 7 50 | x | ) | = | 0 |