Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1.364/(6.82-x)+0.9/(3-x)+0.35/(1-x)+0.096/(0.64-x) = 0 .
    Question type: Equation
    Solution:Original question:
     
341
250
÷ (
341
50
x ) +
9
10
÷ (3 x ) +
7
20
÷ (1 x ) +
12
125
÷ (
16
25
x ) = 0
     Multiply both sides of the equation by:(
341
50
x )
     
341
250
+
9
10
÷ (3 x ) × (
341
50
x ) +
7
20
÷ (1 x ) × (
341
50
x ) +
12
125
÷ (
16
25
x ) × (
341
50
x ) = 0
    Remove a bracket on the left of the equation::
     
341
250
+
9
10
÷ (3 x ) ×
341
50
9
10
÷ (3 x ) × x +
7
20
÷ (1 x ) × (
341
50
x ) +
12
125
÷ (
16
25
x ) = 0
    The equation is reduced to :
     
341
250
+
3069
500
÷ (3 x )
9
10
÷ (3 x ) × x +
7
20
÷ (1 x ) × (
341
50
x ) +
12
125
÷ (
16
25
x ) × (
341
50
x ) = 0
     Multiply both sides of the equation by:(3 x )
     
341
250
(3 x ) +
3069
500
9
10
x +
7
20
÷ (1 x ) × (
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) × (
341
50
x ) = 0
    Remove a bracket on the left of the equation:
     
341
250
× 3
341
250
x +
3069
500
9
10
x +
7
20
÷ (1 x ) × (
341
50
x )(3 x ) +
12
125
= 0
    The equation is reduced to :
     
1023
250
341
250
x +
3069
500
9
10
x +
7
20
÷ (1 x ) × (
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) = 0
    The equation is reduced to :
     
1023
100
283
125
x +
7
20
÷ (1 x ) × (
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) × (
341
50
x )(3 x ) = 0
     Multiply both sides of the equation by:(1 x )
     
1023
100
(1 x )
283
125
x (1 x ) +
7
20
(
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) × (
341
50
x )(3 x ) = 0
    Remove a bracket on the left of the equation:
     
1023
100
× 1
1023
100
x
283
125
x (1 x ) +
7
20
(
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) = 0
    The equation is reduced to :
     
1023
100
1023
100
x
283
125
x (1 x ) +
7
20
(
341
50
x )(3 x ) +
12
125
÷ (
16
25
x ) × (
341
50
x ) = 0
     Multiply both sides of the equation by:(
16
25
x )
     
1023
100
(
16
25
x )
1023
100
x (
16
25
x )
283
125
x (1 x )(
16
25
x ) +
7
20
(
341
50
x )(3 x ) = 0
    Remove a bracket on the left of the equation:
     
1023
100
×
16
25
1023
100
x
1023
100
x (
16
25
x )
283
125
x (1 x )(
16
25
x ) +
7
20
= 0
    The equation is reduced to :
     
4092
625
1023
100
x
1023
100
x (
16
25
x )
283
125
x (1 x )(
16
25
x ) +
7
20
(
341
50
x ) = 0
    Remove a bracket on the left of the equation:
     
4092
625
1023
100
x
1023
100
x ×
16
25
+
1023
100
x x
283
125
x (1 x ) = 0
    The equation is reduced to :
     
4092
625
1023
100
x
4092
625
x +
1023
100
x x
283
125
x (1 x )(
16
25
x ) = 0
    The equation is reduced to :
     
4092
625
41943
2500
x +
1023
100
x x
283
125
x (1 x )(
16
25
x ) +
7
20
(
341
50
x ) = 0
    Remove a bracket on the left of the equation:
     
4092
625
41943
2500
x +
1023
100
x x
283
125
x × 1(
16
25
x ) +
283
125
x = 0
    The equation is reduced to :
     
4092
625
41943
2500
x +
1023
100
x x
283
125
x (
16
25
x ) +
283
125
x x = 0
    Remove a bracket on the left of the equation:
     
4092
625
41943
2500
x +
1023
100
x x
283
125
x ×
16
25
+
283
125
x x = 0
    The equation is reduced to :
     
4092
625
41943
2500
x +
1023
100
x x
4528
3125
x +
283
125
x x +
283
125
= 0
    The equation is reduced to :
     
4092
625
227827
12500
x +
1023
100
x x +
283
125
x x +
283
125
x x = 0

    The solution of the equation:
        x1≈0.694576 , keep 6 decimal places
        x2≈1.478054 , keep 6 decimal places
        x3≈4.706588 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。